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Abstract. A model of the electronic energy spectrum for the rhombohedral 111-V-VI, 
compounds (the ternary isoelectronic analogues of the bismuth-type semimetals and the IV- 
VI semiconductors) has been elaborated on the basis of the genesis of their crystalline 
structure from the simple cubic lattice as well as the derivation of the band spectrum from 
the atomic p states. Rhombohedral III-V-V12 compounds are shown to be narrow-gap 
semiconductors, with two conduction and two valence bands located at r- and L points of 
the Brillouin zone. The band structure of TIBiCY' compounds has been found to be normal, 
while that of TlSbC:' is inverted. 

1. Introduction 

The calculation of the electron energy spectra of crystals is perhaps the oldest problem 
of solid-state quantum physics. Over a period of more than 30 years numerous methods 
have been elaborated for describing the electronic structure of solids. The tight-binding 
method of Stater and Koster [ l ]  has achieved great popularity at present. The inter- 
actions of the Slater-Koster Hamiltonian may be calculated directly, but more frequently 
they are treated as empirical parameters found from experimental data. Many inves- 
tigations have been made for the average valence four, or (IV), semiconductors [2]. 

Nevertheless, the construction of the similar models has been initiated for the average 
valence five, or (V), crystals, i.e. the group V elements (bismuth-type semimetals) and 
the IV-VI narrow-band-gap semiconductors [3]. The crystal structure of these (V) 
materials is similar to the simple cubic (sc) lattice and differs from it by smaller structural 
distortion or by slight non-equivalence of atoms in the components. In addition in these 
materials the bands near the Fermi energy are generated primarily from the atomic 
states of p symmetry [4]. On this basis Pankratatov and Volkov [3] found that electron 
spectra of the bismuth-type semimetals and the IV-VI narrow-gap semiconductors can 
be reasonably well obtained from the universal spectrum of the parent phase, i.e. a 
hypothetical metal with a sc lattice and three overlapping p bands. Taking into account 
the p character of the bands they refer to this band-structure model as the p model [3]. 

In this paper we present a generalisation of the p model [3] for describing the 
electronic structure of the 111-V-V12 compounds, which also belong to the average 
valence five crystals and are ternary isoelectronic analogues of the bismuth-type semi- 
metals and the IV-VI semiconductors. 
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The experimental investigation of the 111-V-VI, compounds started a comparatively 
long time ago [5]. At present data are available for nine 111-V-VI2 compounds with 
I11 = T1; V = Bi, Sb, As; VI = S ,  Se, Te. As a rule TlAsCY' compounds are glass-like 
[6]. The compounds with Bi and Sb are crystalline [7], with TlBiCY' andTlSbTe, having 
rhombohedral symmetry D3d under usual conditions [8], while TlSbS, and TISbSez 
crystallise in a lattice of lower symmetry [9]. 

Thus, among the 111-V-VIz compounds the rhombohedral crystalline structure is 
the simplest, as in the IV-VI rocksalt structure. That is why they have previously been 
experimentally investigated more intensively [lo] (especially T1BiTe2, which is regarded 
as a good thermo- and acoustoelectric material [ l l]) .  

According to the limited experimental data available, the rhombohedral T1B"CY' 
compounds are degenerate narrow-gap semiconductors with anisotropic physical 
properties [12]. For example, the energy gap for TlBiTe, obtained in [13] is 0.11 eV. 
However, this value as well as the value of the effective mass density-of-states is derived 
in the frame of the IV-VI semiconductor band model, though experimental data con- 
cerning the transport properties indicate that the compound has a more complex energy 
spectrum. 

This situation imposes new demands on the model being developed here, i.e. the 
need to predict the band structure of the 111-V-VI, compounds, to explain the nature 
of small gaps, to discover the points of the band extrema localisation in k space, as well 
as to identify the scaling in the isoelectronic series of the (V) crystals. The usual way to 
fit the bands of an isoelectronic series of compounds is first to fit the bands of the 
elementary crystals where scaling is seen more easily, and then to use these parameters 
to fit the bands of the more complex compounds which have a greater number of 
disposable parameters. The p model [3] for describing the electronic structure of cubic- 
like crystals permits the realisation of such an analysis. Our model based on the ideas of 
the p model [3] has the following properties: 

(i) the chemistry of p-bonding in the cubic-like (V) crystals [4] is preserved 
(ii) the main part of the matrix elements is related to the atomic energies and the 

parameters of the chemical constituents, permitting exploration of chemical trends and 
simple treatment of alloys 

(iii) the model employs a minimum number of parameters to describe the band 
structure of the 111-V-VI2 compounds and their alloys. 

In 9 2 we present an analysis of the structure of 111-V-VI2 compounds; the model 
Hamiltonian and its matrix elements are discussed in 0 3. The resulting energy spectrum 
in vicinity of the r- and the L-points of the Brillouin zone is presented in § 4. The model 
parameters and energy gaps of the 111-V-VI2 compounds are discussed in 0 5 .  

2. Crystal lattice and Brillouin zone 

The structure analysis of the presently known 111-V-VI, compounds has shown that 
they have an octahedral atomic arrangement which is characteristic of the IV-VI com- 
pounds and the bismuth-type semimetals. This is due to the cubic symmetry of the valent 
bonds of the V-group elements formed at p orbitals. The symmetry group of the III-V- 
VI2 rhombohedral compounds is D:d, the same as that of the bismuth-type semimetals. 
However, as their Bravais lattices are different the rhombohedral lattice of 111-V-V12 
compounds can be obtained from the sc one by slightly different operations than for Bi 
~ 4 1 .  
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Figure 1. The unit cell of the III-V-V12 
rhombohedral compounds A"'BVCri 
with A = T1, B = Bi, Sb, As, C = S, Se, 
Te . 

Separating in the initial sc lattice two face-centred cubic (FCC) sublattices, at the first 
stage (as for IV-VI) we locate cations into the sites of one FCC sublattice and anions into 
the other. After that operation for the 111-V-VI, compounds we obtain the disordered 
cubic phase with the rocksalt structure; it can be called the 'false rocksalt' lattice. For 
the rhombohedral phase of III-V-V12 two types of the cation atoms A"' and Bv are 
ordered in layers perpendicular to one of the cube body diagonals [ l l l ] .  The latter leads 
to a doubling of the lattice period along [ill] in comparison with IV-VI and to a 
reduction in symmetry from 0; to Did. 

The real 111-V-VI2 rhombohedral lattice is characterised by two additional elements: 
a displacement U of the anion atomic layers towards the layer of BV atoms, which doubles 
the period of the anion sublattice, and a small rhombohedral shear E along [ l l l ] .  The 
displacement of atomic layers and rhombohedral shear are characteristic for Bi-type 
semimetals, these are just the factors that cause specificity of its physical properties. 

If the shear strain and displacement of the anion layers are neglected, the 111-V-VI, 
lattice of sites has the sc structure, its rhombohedral symmetry D3d being connected 
with the complicated unit cell basis. We called such a lattice 'pseudo-cubic'. Its unit cell 
basis vectors (depicted by thick lines in figure 1) are ul = 4 2 ,  1, 1)' u2 = a ( l , 2 ,  l ) ,  a3 = 
a(1, 1 '2)  (where a is the sc lattice spacing). The number of the atoms in the unit cell is 
4 (one A"' atom, one BV and two C"'), its volume is 4a3, that is four times larger than 
the sc lattice unit cell. 

When analysing the structure, the rhombohedral lattice is characterised [15] by the 
length aoof the basis vectors and by the angle a between either two of them. The degree 
of distortion of the 111-V-V12 real rhombohedral lattices from the pseudo-cubic one 
can be described by the relative displacement of the anion layers U = 0.5 - 2x, (x ,  is 
chalcogen atom coordinate in the rhombohedral lattice) and by the relative change of 
the distance between the layers due to the rhombohedral shear strain E , ~  = 
O.~(COS a - cos a,)/[l + cos a,(l - 2 cos a)] (a, is the pseudo-cubic lattice rhombo- 
hedral angle). The numerical values of these parameters for TlBiCy' and TlSbTe, 
compounds are listed in table 1. 

The basis vectors of the reciprocal lattice to the pseudo-cubic one are bl = 
(n /2a)  (377)' b2 = (n /2a) ( i3 i ) ,  b, = (n/2a)(Ti3). The Brillouin zone constructed on 
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Table 1. The parameters of the crystal lattices and Brillouin zones for the III-V-V12 com- 
pounds. 

Pseudo-cubic 
Parameter lattice TIBiSz TIBiSe2 TIBiTez TISbTez 

- 3.090 3.164 3.245 3.205 
- 7.651 7.832 7.137 8.177 

(Y 33O33.4' 31"28' 31" 15' 32" 18' 31"24' 
XC 0.250 - - 0.246 0.243 
EXY 0 0.0238 0.0264 0.0140 0.0246 
U 0 - - 0.008 0.014 

a (4 
a0 (A) 

X n / a  

them has the typical form for the rhombohedral lattices [15]. When passing to the 
deformed coordinate system the Brillouin zone coincides with that of the real 
111-V-VI, compounds. Its six L points with the coordinates ? (n /2a) ( i l  l ) ,  
? (n/2a) ( l i l ) ,  ? (n/2a) (1 17) are located in the centres of six pseudo-square faces. 
Two points ( ( ?n /4a ) ( l l l ) )  are disposed in the centres of the hexagon faces. The 
centres of the remaining six pseudo-hexagon faces are placed in the middle of the bi 
vectors. It is important to note that because of the doubling of the lattice period along 
[ill] the L points are located two times further from the origin of the coordinates than 
the T points. 

The sections of the Brillouin zones for the sc, FCC and pseudo-cubic lattices by the 
plane k, = ky are shown in figure 2. In the figure the most symmetrical points are also 
shown, as well as their matching by the new reciprocal lattice vector Q/2 = (n/2a) 
(1,1, 1) after the doubling of the lattice period. 

3. The Hamiltonian, its matrix elements and secular determinant 

When constructing the electronic energy bands in the frame of the p model [3] the parent 
phase with the initial sc lattice is considered first. Its energy spectrum is that of a metal. 
This fact can be explained if the parent phase spectrum is constructed in terms of the 
tight-binding method on the located p orbitals. On account of the triple degeneracy of 
the p level the energy spectrum consists of three overlapping bands which are degenerate 
at k = 0 (if we neglect spin-orbit interaction). As the number of the valence p electrons 
per atom is three, all bands without mutual interaction are half-filled. Consequently, to 
endow dielectric properties to the spectrum it is necessary to double the lattice period 
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of the sc parent phase. The almost complete nesting of the parent phase Fermi surface 
is aprecondition for that, the appearance of the gap being connected with the imposition 
on the sc lattice of some perturbation, which is considered to be known in the frame of 
the p model. 

This perturbation is initiated by the sc lattice distortion in the Bi-type semimetals as 
well as in IV-VI semiconductors by the so-called ionic potential A(r)  characterising the 
chemical difference of the metal and chalcogen atoms. The A(r)  potential satisfies the 
following relations: 

(1) 
A(r + P )  = A k ) ,  
A(r + 7) = -A(r), 

where p is the lattice vector of one of the FCC sublattice, and 7 = a(l11).  
In accordance with the general structure analysis the perturbation imposed on the 

parent phase of the 111-V-V12 compounds includes several parts. The first is the first 
ionic potential A(r) ,  which is completely equivalent to the IV-VI perturbation. It 
characterises the chemical difference between the chalcogen atom and the metal pseudo- 
atom D'" = (A"'BV) (that is, its physical characteristics are average between A"' and 
BV ones). In order to take into account the cation ordering we introduce the second ionic 
potential Z(r) as the second part of the perturbation manifesting the chemical difference 
of two cation types. The X(r) potential has translation periodicity of the rhombohedral 
lattice and it satisfies the following relations 

q r  + rr) = X(r) 
q r  + 27) = -E(.) 

(2) 

(3) 
where rr is the rhombohedral lattice vector. With the origin of coordinates chosen at the 
cation atom the A(r)  and X(r) are even functions 

A( - r )  = A(r) (4) 

q - r )  = q r ) .  ( 5 )  
The perturbations characterising the anion layer displacement U(r)  and rhombo- 

hedral deformation ~ ( r )  have the same form as for the semimetals [14]. However, in 
contrast to semimetals the U(r)  potential as well as E(r)  are even functions due to 
centring of the coordinate system at the cation rather than at the displacing layer [14]. 
The analysis shows that the remaining U(r) symmetry properties coincide with the Z(r)  
ones, that allows us to unite them in the frame of the interpolation method. The united 
potential shall be designated by 2(r)  symbol. 

After inserting the deformation we have to pass to the deformed coordinate system 
[16] with the result that the Bravais lattices of the deformed and non-deformed crystals 
coincide. Therefore the translation periods of all enumerated potentials are unchanged 
and E(r) potential has the period of the sc lattice. 

It is also convenient to divide the spin-orbit interaction into three parts A(r) ,  AA(r), 
A'(r) caused by the V(r)  (the sc lattice potential), A(r)  and Z(r) ,  correspondingly. 

Thus, the complete Hamiltonian for the model has the form 
A =  A0 + A + t + A + AA + 2 + Ax (6) 

where fro+ A is the sc lattice Hamiltonian. 

is searched in the expansion form 
In accordance with the p model the solution of the Schrodinger equation = E v  

~ ( r )  = E unkoqnka(r) 
nka 



1134 D V Gitsu et a1 

over the sc lattice Bloch functions constructed from the p orbitals 

(7) 
1 

q)nko(r) = - 2 eimipno(r - R ~ ) .  VN 
Here the summation is carried out over N sites of the sc lattice, pna(r) are localised 
functions with p orbital symmetry, U is a spin index, and the index n = x ,  y ,  z numbers 
the p orbitals. The set of equations for determination of the energy spectrum and the 
wavefunction has the form 

Using only two nearest-neighbour interactions one obtains the Hamiltonian matrix 
of the deformed FCC lattice (2 = h" = 0 )  

H(k(&)  = 

1. &k) + q(k)  + W ( k )  + fi + do + &(k) A. + q y k )  + W y k )  + A" 
+ q A ( k )  + WA(k) + hA -&k) + 4 ( k )  + @(k) + h + - d(k) 

(9 )  

All the above are 6 x 6 matrices with elements 

5 x x ( k )  = 5 0  cos(kxa) + 5,[cos(k,a) + cos(k,a>l 
q$$)(k) = q p  cos(k,a)[cos(k,a) + cos(k,a)] + cos(k,a) cos(k,a) 

E,,@) = &*[cos(k,a) + cos(k,a)] + E 2  cos(k,a). 

(10) w$$)(k) = W") sin(k,a) sin(k,a) 

The residual matrix elements are obtained from (10) by permutation of the cyclicindices. 
The matrix A. is diagonal (Aojj  = AoSi,), do is non-diagonal = ~ ~ ( 1  - Sii ) ) .  The 
constantsAo, gi, vi, W ,  q f  , W",  are theoverlapintegrals. These are model parameters 
[3]. All spin-orbital matrices have the same form [3] 

6, -6, 
A(",") = -iA(A,x) [-:: 0 (11) 

- 6, 

where U,, are the Pauli spin matrices, spinors are determined relative to the cubic axis 
z .  The constants A, AA, A" are also model parameters. 

Taking into account the properties (2)-(5) for the Z(r)  matrix elements one obtains 

where 
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As follows from (12) the potential X(r) results in interaction of the qnOro, and q n k U  states 
separated by the Q/2 vector in the k space. Consequently, one more quasi-diagonal 
block of the form (9) (replacing k with k - Q/2), and non-diagonal blocks Z(r)  defined 
by the 2 and A' potentials appear in the complete Hamiltonian. 

Thus, the set of equation (8) in matrix form is 
1 

where i, is a 1 x I unit matrix, dk, &+Q, etc are the 1 x 6 column matrices of the U,ko 

coefficients. 

4. Energy terms at the r and L points 

In the III-V-V12 cubic disordered phase as well as in the IV-VI actual energy extrema 
are located at the L points in the Brillouin zone of the FCC lattice [17]. After ordering of 
the cations the L points, which are equivalent in the cubic disordered phase, separate 
into two groups. The first includes two Lpoints located at a chosen spatial cubic diagonal. 
In the rhombohedral lattice they are brought into coincidence with the r point (000) by 
means of the new reciprocal lattice vector Q/2. The remaining L points of the second 
group are united with the X points of the FCC phase by means of the vector Q/2. The 
equivalence of the points L = (n/2a) (111) and r =  (000) as well as L =  
(n/2a) (1-1 -1) and X = (n/a) (001) is seen visually in figure 2. 

Thus, in the III-V-VI2 rhombohedral phase one might expect the band extrema to 
be located at the L and r points of the Brillouin zone. 

4.1. Point r 
Taking into account the r point symmetry we may separate the 24th order secular 
determinant into two 12th order ones of the form (15), where 

-E-i3 + (W-  + Eo)? + A D  0 

0 -E+i3+(W+ + E o ) f + A + D  

2(C0i, + WIT+ A'D) 0 

2(w2T+ x1i3) 0 

I 2(Coi3 + W , i +  A'D) 2 ( ~ 2 i + ~ , i 3 )  

0 0 

( - E  - + q - ) i 3  + A - D + Eo? + E T  
= O  (15) 

g 3  + E T  ( -E++q+)i3+A+D+E0T I 
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E ,  =E*  A. W+ = W3W" A ,  =A?A" & = & I  + E 2  

r . - = 2 ( r 1 3 r ? ) +  ( r 2 T r 8  53=530+2531 

CO = ~Z;x(ooo) + 2CiX( 1 - 10) + CL(0 1 - l ) ,  

Z 1 = 2 j X ( l  00) + 2 q x  (0 10) 

w1 = ;xiy (0 0 0) + xiy (1 - 1 0) + 2c;, (1 0 - 1) 

w* = C;>100) + xiy (0 1 0) + (0 0 1) 

0 0  

Here we used the designations: ZA,n(l, q ,  r) = ~ n , ( r ) I Z ( r ) i ~ n ( ~ - R , ) ,  Z$n( l ,  q ,  r )=  
(pn8(r) lC(r+ T ) l p n ( r - R m ) )  where I ,  q ,  r a re  integers and R, = a(1qr). 

As follows from the form of the matrices i and D the secular determinant (15) is 
separated into three determinants, two of them are third order and one is sixth order. 
The roots of the equation I - E+i, + (W+ + E ~ ) ?  + A + D l =  0 are easy to find. They define 
the first set of the r-terms 

(16) 
E&-) = -Ao +A+ - (W+ + E O ) ,  

E;*(r) = -A0 + &(W+ + E O  -A+) * 4[9(W+ + ~ 0 ) ~  + 6(W+ + EO)A+ + 9A$]"*. 

These levels are generated from the valence bands at the L points of the FCC phase. The 
Z(r) potential has no effect on them. This fact is a consequence of its symmetry rather 
than of the suppositions used. 

Three other energy levels are found by solving the cubic equation corresponding to 
the second third-order determinant. 

Among the terms obtained from the sixth-order determinant there is one originated 
from the E;  L term of the FCC phase [3] that together with E$,) from (16) defined the 
gap at the r point. But the equation of degree 6 cannot be solved analytically. So we 
have to use perturbation theory. The analysis of the term position at the L- and I' points 
of the FCC phase showed [18] that the levels at the L point are situated nearer to the 
middle of the forbidden gap than the terms. At least the E;  level is far enough from 
the r terms. So for the terms forming the conduction band extremum at the r point we 
get 

where E2(r) is the root of the first diagonal block (15) (the expressions for ELyr) follow 
from (16) by replacing index '+' by '-' and bo by -Ao),  E f  defines the set of l- levels of 
the FCC phase, BIi are the transformed non-diagonal block elements (15). 

< 0 the levels E3i-l and EGr) are shifted 
downwards in energy, the forbidden gap Egr being increased in comparison with the Eg 
of the FCC phase. Under influence of the 2(r)  potential the E@-) term (17) is shifted 
downwards in energy as well. But that shift does not compensate for the increase of Egr 

As follows from (16), under deformation 
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under deformation. As a result the Egr is increased in comparison with the Eg of the FCC 
phase. When inverting the terms the Egr decreases under deformation. Therefore for 
small Z(r) the energy gap at the point can be smaller than that in the FCC phase. But 
for large X(r) the Egr increases. 

4.2.  L point 

In the FCC phase the symmetry for the L point is D3d, but for the X point it is D4,,. After 
superposition of them in the rhombohedral lattice at the intersection of small D3,, and 
D4h a new small group C2h arises. Its irreducible representations characterise the band 
states at the L point in the Brillouin zone of the rhombohedral lattice. 

The calculation of the L terms has been carried out for point L = (n/2a) (1 - 1 - l), 
which after including the A(r)  potential becomes equivalent to L = (n/2a) (-1 11). In 
its turn the C(r )  brings them into coincidence with the points X = ( n / a )  (100) and M = 
(n/a) (0 - 1 - 1). The secular determinant for the L point has the form 

Analogous to the point after some unitary transformations the A(kL(&) block from 
(18) becomes quasi-diagonal, the Z(r) potential having no effect on one from its term 
sets. The energy levels 

Et(L) = 232/p+  COS(^, +/3 - 2n/3) - A0 (19) 

= 232/p+ cos(g,+/3+2n/3)-Ao 

where 

determine the first term set generated from the valence L bands of the FCC phase. 

lowest conduction band is determined by the term 
The E:(L) level determines the highest valence band at the L point. In its turn the 

where EGL) has the same form as Et+(L) (19) with the index ‘+’ replaced by ‘-’ and A. 
replaced by -Ao; E;:‘’) are two sets of the terms at the X point of the deformed FCC 
phase; C,, and D, are the matrix elements of the transformed matrix Z(kL). 

It should be noted that for the L point the use of the perturbation theory is more 
justified than for the point as far as the X levels of the FCC phase are situated much 
further from the L-terms than the r levels. 

Analysis of the displacement of the L terms originating the band extrema in com- 
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I t lo' ! 

I I 

Figure 3. A qualitative picture of 
the band spectrumof the 111-V-V12 
rhombohedral compounds near the 
middle of the gap for the (a )  normal 
and (b )  inverted positions of the 
levels. 

Table 2. The interpolation parameters and energy gaps (in units of eV) in the spectrum of 
TIBVCyl compounds (B = Bi, Sb, C = Se, Te). 

Parameter T1BiSe2 TIB iTe TISbTez 

A- 0.554 0.554 0.340 
A+ 0.140 0.280 0.280 

w+ 0.650 0.290 0.380 
A0 1.380 1.000 0.500 
5 0  3.170 3.245 3.205 

EO 0.200 0.200 0.944 

W -  -0.315 -0.090 -0.075 

E1 -0.900 -0.900 -0.900 

I =  0.182 0.182 -0.061 
EO -0.185 -0.088 -0.100 
Etr 0.30 0.21 -0.62 
E& 0.06 0.10 -0.66 

parison with their position in the FCC phase shows that for the normal term positions 
(EYL > E:L) under deformation (q, < 0) and the 2(r )  potential the levels E:L and ETL 
converge, but for inverted position they diverge. 

As a result of this analysis the qualitative picture of the band spectrum of the III-V- 
VI2 rhombohedral compounds near the middle of the gap is shown in figure 3. 

5. Model parameters and energy gaps of 111-V-V12 compounds 

In the frame of the p model the electronic energy spectrum is determined by the group 
of the phenomenological parameters mentioned above. They can be separated into two 
groups: the FCC phase parameters and those for the rhombohedral phase. For III-V- 
VI2 compounds the first group can be well interpolated [ 171 on the known parameters 
of the IV-VI semiconductors and Bi-type semimetals [3, 141. For example, the ionic 
parameter A. is determined by the atomic one Aat = 9,/2 - (9, + &)/4 (9A,B,c are the 
ionising potentials of the atomic p terms). The dependence A. = f(Aat) is linear for the 
IV-VI semiconductors [3], allowing us to find A. for the 111-V-VI2 ternary disordered 
phases by means of a value Aat obtained from the atomic characteristics. The constant 
A, is equal to the chalcogen spin-orbit splitting, but A- = (AA + ilB)/2 (AA, AB are 
the constants il for the metal atoms). To determine the parameters W ,  their linear 
dependences from lattice constants obtained for IV-VI compounds were used. The 
values go and Cl are the same for all group V materials [3,14]. 
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As to the second group of parameters, because of the absence of the experimental 
data we restricted ourselves to the most important ones. The parameter 
Eo = Cix(OOO) can be found by analogy with A. from the formula CO = (9, - 9,)/2. 
The displacement potential inC(r) can be taken into account by means of the parameters 
for semimetals [14]. The parameter A' was defined as a half-difference of the spin-orbit 
splitting constants of the A"' and BV atoms. Finally the parameter (deformation 
parameter) was calculated by the formula = E ~ ~ D ~  (for the deformation potential 
constant Do we used the constants for IV-VI compounds using the principle of iso- 
electronic analogy). 

Using the obtained set of the parameters, the numerical calculations of the energy 
gaps for the III-V-V12 compounds were performed. These data as well as the values of 
the interpolation parameters for three of them are given in table 2. 

Several important conclusions follow from table 2. First, the TlB "Cy' rhombohedral 
compounds are narrow-gap semiconductors, their band spectrum being indirect. Sec- 
ondly, the Egr and EgL energy gaps being small, the dispersion law should be rather non- 
parabolic. At last the TlBiCy' energy spectrum is normal (EgL > 0, Egr > 0), but the 
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Figure4. The band structure of (a) TlBiTe, 
and ( b )  TISbTe2. 
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TlSbCY’ one is inverted (EgL < 0, Egr < 0). We should also note that the inverted nature 
of the TlSbC;’ spectrum is connected with the small value of the ionicity Ao; that is, the 
band spectrum inversion in the rhombohedral phase is the result of its inversion in the 
cubic disordered phase. 

The bands of the T1BiTe2 and T1SbTe2 compounds along the [ill] (T-T), [lli] 
(T-L), [loo] (I?-X), [110] (I?-Xl) and [ l i O ]  (T-C,) directions calculated numerically 
from (19) are shown in figure 4. These compounds are seen to be the narrow-gap indirect 
semiconductors with an L valence band and a r conduction band. Figure 4 shows one 
more local extremum group at the H’ point along [liO]. In the frame of the p model the 
H’ extrema are generated from the C extrema of T1B”CY’ in the cubic phase which are 
analogous to the C extrema of the cubic IV-VI phase. However, the 2 extrema energies 
are determined by small second-neighbour interactions, so their values calculated from 
(19) are only rough estimates. It should be noted that in [19] for Eg of the TlBiTe, 
compound the value 0.1 eV is given, that, as it is seen from table 2, is in rather good 
agreement with the obtained theoretical value EgL. However to get the full picture of 
the band spectrum the model parameter should be defined more exactly by fitting 
experimental and theoretical data. 
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